login::  password::

cwbe coordinatez:

you: r,
system: public
net: yes



total descendants::784456
total children::292

21 NEW
289 K

show[ 2 | 3] flat

Mala by sa Kyberia stať smartphone- & tablet- pozitívnou ?
333 voted
Aké node_id kyberia.sk nikdy nedosiahne ? (momentálne, 14.12.2019 / AE490214 je to id 8596224 )
9 000 000 (9 miliónov nód)
9 500 000 (9,5 meganode)
10 000 000 (10 MNode)
20 000 000 (20 MN)
191 voted
Aku trhovu hodnotu ma jedno K ?
1 €
2 €
5 €
10 €
1 cent
2 centy
5 centov
10 centov
20 centov
50 centov
566 voted
Is kyberia better than facebook ?
777 voted
zakazat obcasne umiestnenie flayeru na maine?
je mi to jedno
705 voted

horror lamarcki0
edna soledadova0
Poppy Ig0
one step to ...0
pokurvene ho...0
jolly good0
Kluk co se m...0
dark matter0
Pham Nuwen0
binary riot0
chory nos0
jack daniels4
{if $header_id neq true}

{* title *}{include file="791948.tpl"}

{if $user_id eq true}
{if $header_id neq true}
{* toolbar *}{include file="1549959.tpl"}
{if $error eq true}

{if $new_mail eq true}
u have {$new_mail} new mail,last from {$new_mail_name}


{include file="1549834.tpl"}

latest data nodes

{get_nodes_by_type type=12 listing_amount=23 offset=$offset}
{foreach from=$get_nodes_by_type item=child}


{* node_settings *}{include file="1549925.tpl"}

{if $user_id eq false}


{* stav uctu *}{* include file="3024338.tpl" *}

real-life podujatia súvisiace s kyberiou

{get_linked_nodes node_id=5521721 listing_amount=5}
{foreach from=$get_linked_nodes item=child}
by {$child.login}


Vitality of Kyberia community

{get_linked_nodes listing_amount=11}

some nodes worth of Your interest

{foreach from=$get_linked_nodes item=child }



node created by {$child.login}



request password

{if $user_id neq false}

order by:  

show content:   

user blogs

{get_nodes_by_parent parent=21 listing_amount=23 offset=$offset}
{foreach from=$get_nodes_by_parent item=child}



by {$child.login}


Slovak Presidency
{*include file="1670413.tpl"*}

{* footer *}{include file="1549377.tpl"}

  • 000001010000000108666326
    Synapse creator 27.09.2019 - 12:25:38 (modif: 27.09.2019 - 12:40:01) level: 1 UP [4K] New Hardlink Content changed

    Dear friends, dnes je ďalšia Nočná v Novej Cvernovke, tentoraz s Fractions vydávajúcich na Fleisch Records a Nastyou Muravyovou, kľúčovou postavou kyjevskej Cxemy. Budeme mať PKO Soundsystem a bude to dobré.

    Kyberia call: Prvým 10 idčkam, čo mi napíšu do pošty, že chcú ísť, dám friendly vstup na bráne za 5€ :)

    FB event: https://www.facebook.com/events/2446560142293792/

    S páskou z Bielej Noci vstup za 5€ (door only).
    Predpredaj za 6€ k dispo do 22:00 tu: https://tootoot.fm/en/events/5d6d1e86faf9de0288912d6c?fbclid=IwAR30t2I3_lHXk51lwCGEZ6ialrwaud_sK8Btd4TxB7Fpbw7xS4syL267Uko

    Na mieste 8€.

    See you na bare :)
  • 000001010000000108664549

    Quantum Supremacy Using a Programmable Superconducting Processor

    September 21, 2019
    Eleanor G. Rieffel
    NASA Ames Research Center
    Moffett Field, California

    Note: this paper was originally posted on NASA NTRS but was then removed, NASA has not provided a reason for its removal.

    Quantum supremacy using a programmable superconducting processor Google AI Quantum and collaboratorsy The tantalizing promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor. A fundamental challenge is to build a high-delity processor capable of running quantum algorithms in an exponentially large computational space.

    Here, we report using a processor with programmable superconducting qubits to create quantum states on 53 qubits, occupying a state space 253 ˘1016. Measurements from repeated experiments sample the corresponding probability distribution, which we verify using classical simulations. While our processor takes about 200 seconds to sample one instance of the quantum circuit 1 million times, a state-of-the-art supercomputer would require approximately 10,000 years to perform the equivalent task.

    This dramatic speedup relative to all known classical algorithms provides an experimental realization of quantum supremacy on a com- putational task and heralds the advent of a much-anticipated computing paradigm. In the early 1980s, Richard Feynman proposed that a quantum computer would be an e ective tool to solve problems in physics and chemistry, as it is exponentially costly to simulate large quantum systems with classical computers [1]. Realizing Feynman’s vision poses signi – cant experimental and theoretical challenges. First, can a quantum system be engineered to perform a computa- tion in a large enough computational (Hilbert) space and with low enough errors to provide a quantum speedup? Second, can we formulate a problem that is hard for a classical computer but easy for a quantum computer? By computing a novel benchmark task on our superconduct- ing qubit processor[2{7], we tackle both questions. Our experiment marks a milestone towards full scale quantum computing: quantum supremacy[8].

    In reaching this milestone, we show that quantum speedup is achievable in a real-world system and is not precluded by any hidden physical laws. Quantum supremacy also heralds the era of Noisy Intermediate- Scale Quantum (NISQ) technologies. The benchmark task we demonstrate has an immediate application in generating certi able random numbers[9]; other initial uses for this new computational capability may include optimization optimization [10{12], machine learning[13{ 15], materials science and chemistry [16{18]. However, realizing the full promise of quantum computing (e.g. Shor’s algorithm for factoring) still requires technical leaps to engineer fault-tolerant logical qubits[19{23].

    To achieve quantum supremacy, we made a number of technical advances which also pave the way towards er- ror correction. We developed fast, high- delity gates that can be executed simultaneously across a two-dimensional qubit array. We calibrated and benchmarked the pro- cessor at both the component and system level using a powerful new tool: cross-entropy benchmarking (XEB).

    Finally, we used component-level delities to accurately predict the performance of the whole system, further showing that quantum information behaves as expected when scaling to large systems. A COMPUTATIONAL TASK TO DEMONSTRATE QUANTUM SUPREMACY To demonstrate quantum supremacy, we compare our quantum processor against state-of-the-art classical com- puters in the task of sampling the output of a pseudo- random quantum circuit[24{26].

    Random circuits are a suitable choice for benchmarking since they do not pos- sess structure and therefore allow for limited guarantees of computational hardness[24, 25, 27, 28]. We design the circuits to entangle a set of quantum bits (qubits) by re- peated application of single-qubit and two-qubit logical operations. Sampling the quantum circuit’s output pro- duces a set of bitstrings, e.g. f0000101, 1011100, …g. Due to quantum interference, the probability distribution of the bitstrings resembles a speckled intensity pattern produced by light interference in laser scatter, such that some bitstrings are much more likely to occur than oth- ers. Classically computing this probability distribution becomes exponentially more di cult as the number of qubits (width) and number of gate cycles (depth) grows. We verify that the quantum processor is working prop- erly using a method called cross-entropy benchmarking (XEB) [24, 26], which compares how often each bitstring is observed experimentally with its corresponding ideal probability computed via simulation on a classical com- puter. For a given circuit, we collect the measured bit- strings fx igand compute the linear XEB delity [24{ 26, 29], which is the mean of the simulated probabilities of the bitstrings we measured: F XEB = 2 nhP(x i)i i 1 (1) where nis the number of qubits, P(x i) is the probability of bitstring x i computed for the ideal quantum circuit, and the average is over the observed bitstrings. Intu- itively, F XEB is correlated with how often we sample high probability bitstrings. When there are no errors in the quantum circuit, sampling the probability distribution will produce F XEB = 1. On the other hand, sampling from the uniform distribution will give hP(x i)i i = 1=2n and produce F XEB = 0. Values of F XEB between 0 and 2 Qubit Adjustable coupler a b 10 millimeters FIG. 1. The Sycamore processor. a, Layout of processor showing a rectangular array of 54 qubits (gray), each con- nected to its four nearest neighbors with couplers (blue). In- operable qubit is outlined. b, Optical image of the Sycamore chip. 1 correspond to the probability that no error has oc- curred while running the circuit.

    The probabilities P(x i) must be obtained from classically simulating the quan- tum circuit, and thus computing F XEB is intractable in the regime of quantum supremacy. However, with certain circuit simpli cations, we can obtain quantitative delity estimates of a fully operating processor running wide and deep quantum circuits. Our goal is to achieve a high enough F XEB for a circuit with su cient width and depth such that the classical computing cost is prohibitively large. This is a di cult task because our logic gates are imperfect and the quan- tum states we intend to create are sensitive to errors. A single bit or phase ip over the course of the algorithm will completely shu e the speckle pattern and result in close to 0 delity [24, 29].

    Therefore, in order to claim quantum supremacy we need a quantum processor that executes the program with su ciently low error rates. BUILDING AND CHARACTERIZING A HIGH-FIDELITY PROCESSOR We designed a quantum processor named Sycamore” which consists of a two-dimensional array of 54 trans- mon qubits, where each qubit is tunably coupled to four nearest-neighbors, in a rectangular lattice. The connec- tivity was chosen to be forward compatible with error- correction using the surface code [20].

    A key systems- engineering advance of this device is achieving high- delity single- and two-qubit operations, not just in iso- lation but also while performing a realistic computation with simultaneous gate operations on many qubits. We discuss the highlights below; extended details can be found in the supplementary information. In a superconducting circuit, conduction electrons con- dense into a macroscopic quantum state, such that cur- rents and voltages behave quantum mechanically [2, 30]. Our processor uses transmon qubits [6], which can be thought of as nonlinear superconducting resonators at 5 to 7 GHz.

    The qubit is encoded as the two lowest quan- tum eigenstates of the resonant circuit. Each transmon has two controls: a microwave drive to excite the qubit, and a magnetic ux control to tune the frequency. Each qubit is connected to a linear resonator used to read out the qubit state [5]. As shown in Fig. 1, each qubit is also connected to its neighboring qubits using a new ad- justable coupler [31, 32]. Our coupler design allows us to quickly tune the qubit-qubit coupling from completely o to 40 MHz. Since one qubit did not function properly the device uses 53 qubits and 86 couplers. The processor is fabricated using aluminum for metal- ization and Josephson junctions, and indium for bump- bonds between two silicon wafers. The chip is wire- bonded to a superconducting circuit board and cooled to below 20 mK in a dilution refrigerator to reduce am- bient thermal energy to well below the qubit energy. The processor is connected through lters and attenu- ators to room-temperature electronics, which synthesize the control signals.

    The state of all qubits can be read simultaneously by using a frequency-multiplexing tech- nique[33, 34]. We use two stages of cryogenic ampli ers to boost the signal, which is digitized (8 bits at 1 GS/s) and demultiplexed digitally at room temperature. In to- tal, we orchestrate 277 digital-to-analog converters (14 bits at 1 GS/s) for complete control of the quantum pro- cessor. We execute single-qubit gates by driving 25 ns mi- crowave pulses resonant with the qubit frequency while the qubit-qubit coupling is turned o .

    The pulses are shaped to minimize transitions to higher transmon states[35]. Gate performance varies strongly with fre- quency due to two-level-system (TLS) defects[36, 37], stray microwave modes, coupling to control lines and the readout resonator, residual stray coupling between qubits, ux noise, and pulse distortions. We therefore 3 Pauli and measurement errors CDF am, E ted histogr Integra e 1 e 2 e 2c e r a b Average error Single-qubit (e 1 ) Two-qubit (e 2 ) Two-qubit, cycle (e 2c ) Readout (e r ) Isolated 0.15% 0.36% 0.65% 3.1% Simultaneous 0.16% 0.62% 0.93% 3.8% Simultaneous Pauli error e 1 , e 2 10 -2 10 -3 Isolated FIG. 2. System-wide Pauli and measurement errors. a, Integrated histogram (empirical cumulative distribution func- tion, ECDF) of Pauli errors (black, green, blue) and readout errors (orange), measured on qubits in isolation (dotted lines) and when operating all qubits simultaneously (solid). The median of each distribution occurs at 0.50 on the vertical axis. Average (mean) values are shown below. b, Heatmap showing single- and two-qubit Pauli errors e 1 (crosses) and e 2 (bars) positioned in the layout of the processor. Values shown for all qubits operating simultaneously. optimize the single-qubit operation frequencies to miti- gate these error mechanisms. We benchmark single-qubit gate performance by using the XEB protocol described above, reduced to the single- qubit level (n= 1), to measure the probability of an error occurring during a single-qubit gate. On each qubit, we apply a variable number mof randomly selected gates and measure F XEB averaged over many sequences; as m increases, errors accumulate and average F XEB decays.

    We model this decay by [1 e 1=(1 1=D2)]m where e 1 is the Pauli error probability. The state (Hilbert) space di- mension term, D= 2n = 2, corrects for the depolarizing model where states with errors partially overlap with the ideal state. This procedure is similar to the more typical technique of randomized benchmarking [21, 38, 39], but supports non-Cli ord gatesets [40] and can separate out decoherence error from coherent control error. We then repeat the experiment with all qubits executing single- qubit gates simultaneously (Fig.2), which shows only a small increase in the error probabilities, demonstrating that our device has low microwave crosstalk. We perform two-qubit iSWAP-like entangling gates by bringing neighboring qubits on resonance and turning on a 20 MHz coupling for 12 ns, which allows the qubits to swap excitations. During this time, the qubits also ex- perience a controlled-phase (CZ) interaction, which orig- inates from the higher levels of the transmon. The two- qubit gate frequency trajectories of each pair of qubits are optimized to mitigate the same error mechanisms consid- ered in optimizing single-qubit operation frequencies. To characterize and benchmark the two-qubit gates, we run two-qubit circuits with mcycles, where each cy- cle contains a randomly chosen single-qubit gate on each of the two qubits followed by a xed two-qubit gate. We learn the parameters of the two-qubit unitary (e.g. the amount of iSWAP and CZ interaction) by using F XEB as a cost function. After this optimization, we extract the per-cycle error e 2c from the decay of F XEB with m, and isolate the two-qubit error e 2 by subtracting the two single-qubit errors e 1. We nd an average e 2 of 0:36%.

    Additionally, we repeat the same procedure while simul- taneously running two-qubit circuits for the entire array. After updating the unitary parameters to account for ef- fects such as dispersive shifts and crosstalk, we nd an average e 2 of 0.62%. For the full experiment, we generate quantum circuits using the two-qubit unitaries measured for each pair dur- ing simultaneous operation, rather than a standard gate for all pairs. The typical two-qubit gate is a full iSWAP with 1=6 of a full CZ. In principle, our architecture could generate unitaries with arbitrary iSWAP and CZ inter- actions, but reliably generating a target unitary remains an active area of research. Finally, we benchmark qubit readout using standard dispersive measurement [41]. Measurement errors aver- aged over the 0 and 1 states are shown in Fig 2a.

    We have also measured the error when operating all qubits simul- taneously, by randomly preparing each qubit in the 0 or 1 state and then measuring all qubits for the probability of the correct result. We nd that simultaneous readout incurs only a modest increase in per-qubit measurement errors. Having found the error rates of the individual gates and readout, we can model the delity of a quantum circuit as the product of the probabilities of error-free opera- 4 single-qubit gate: 25 ns qubit XY control two-qubit gate: 12 ns qubit 1 Z control qubit 2 Z control coupler cycle: 1 2 3 4 5 6 m time column row 7 8 A BC D A B D C a b FIG. 3. Control operations for the quantum supremacy circuits. a, Example quantum circuit instance used in our experiment. Every cycle includes a layer each of single- and two-qubit gates. The single-qubit gates are chosen randomly from f p X; p Y; p Wg. The sequence of two-qubit gates are chosen according to a tiling pattern, coupling each qubit sequentially to its four nearest-neighbor qubits.

    The couplers are divided into four subsets (ABCD), each of which is executed simultaneously across the entire array corresponding to shaded colors. Here we show an intractable sequence (repeat ABCDCDAB); we also use di erent coupler subsets along with a simpli able sequence (repeat EFGHEFGH, not shown) that can be simulated on a classical computer. b, Waveform of control signals for single- and two-qubit gates. tion of all gates and measurements. Our largest random quantum circuits have 53 qubits, 1113 single-qubit gates, 430 two-qubit gates, and a measurement on each qubit, for which we predict a total delity of 0:2%.

    This delity should be resolvable with a few million measurements, since the uncertainty on F XEB is 1= p N s, where N s is the number of samples. Our model assumes that entangling larger and larger systems does not introduce additional error sources beyond the errors we measure at the single- and two-qubit level | in the next section we will see how well this hypothesis holds. FIDELITY ESTIMATION IN THE SUPREMACY REGIME The gate sequence for our pseudo-random quantum circuit generation is shown in Fig.3. One cycle of the algorithm consists of applying single-qubit gates chosen randomly from f p X; p Y; p Wgon all qubits, followed by two-qubit gates on pairs of qubits. The sequences of gates which form the supremacy circuits” are designed to minimize the circuit depth required to create a highly entangled state, which ensures computational complexity and classical hardness. While we cannot compute F XEB in the supremacy regime, we can estimate it using three variations to re- duce the complexity of the circuits.

    In patch circuits”, we remove a slice of two-qubit gates (a small fraction of the total number of two-qubit gates), splitting the cir- cuit into two spatially isolated, non-interacting patches of qubits. We then compute the total delity as the product of the patch delities, each of which can be easily calcu- lated. In elided circuits”, we remove only a fraction of the initial two-qubit gates along the slice, allowing for entanglement between patches, which more closely mim- ics the full experiment while still maintaining simulation feasibility. Finally, we can also run full veri cation cir- cuits” with the same gate counts as our supremacy cir- cuits, but with a di erent pattern for the sequence of two- qubit gates which is much easier to simulate classically [29]. Comparison between these variations allows track- ing of the system delity as we approach the supremacy regime. We rst check that the patch and elided versions of the veri cation circuits produce the same delity as the full veri cation circuits up to 53 qubits, as shown in Fig.4a. For each data point, we typically collect N s = 5 106 total samples over ten circuit instances, where instances di er only in the choices of single-qubit gates in each cycle.

    We also show predicted F XEB values computed by multiplying the no-error probabilities of single- and two-qubit gates and measurement [29]. Patch, elided, and predicted delities all show good agreement with the delities of the corresponding full circuits, despite the vast di erences in computational complexity and en- tanglement. This gives us con dence that elided circuits can be used to accurately estimate the delity of more complex circuits. We proceed now to benchmark our most computa- tionally di cult circuits. In Fig.4b, we show the mea- sured F XEB for 53-qubit patch and elided versions of the full supremacy circuits with increasing depth.

    For the largest circuit with 53 qubits and 20 cycles, we collected N s = 30 106 samples over 10 circuit instances, obtaining F XEB = (2:24 0:21) 10 3 for the elided circuits. With 5˙con dence, we assert that the average delity of run- ning these circuits on the quantum processor is greater than at least 0.1%. The full data for Fig.4b should have similar delities, but are only archived since the simula- tion times (red numbers) take too long. It is thus in the quantum supremacy regime. 5 number of qubits, n number of cycles, m n = 53 qubits a Classically veriable b Supremacy regime idelity, XEB F

    XEB m = 14 cycles Prediction from gate and measurement errors Full circuit Elided circuit Patch circuit Prediction Patch E F G H A B C D C D A B Elided (±5 error bars) 10 millennia 100 years 600 years 4 years 4 years 2 weeks 1 week 2 hour sC la ic mp ng @ Sycamore 5 hours Classical verication Sycamore sampling (N s = 1M): 200 seconds 10 15 20 25 30 35 40 45 50 55 12 14 16 18 20 10 -3 10 -2 10 -1 10 0 FIG. 4. Demonstrating quantum supremacy. a, Veri cation of benchmarking methods. F XEB values for patch, elided, and full veri cation circuits are calculated from measured bitstrings and the corresponding probabilities predicted by classical simulation. Here, the two-qubit gates are applied in a simpli able tiling and sequence such that the full circuits can be simulated out to n= 53;m= 14 in a reasonable amount of time. Each data point is an average over 10 distinct quantum circuit instances that di er in their single-qubit gates (for n= 39;42;43 only 2 instances were simulated). For each n, each instance is sampled with N s between 0:5M and 2:5M.

    The black line shows predicted F XEB based on single- and two-qubit gate and measurement errors. The close correspondence between all four curves, despite their vast di erences in complexity, justi es the use of elided circuits to estimate delity in the supremacy regime. b, Estimating F XEB in the quantum supremacy regime. Here, the two-qubit gates are applied in a non-simpli able tiling and sequence for which it is much harder to simulate. For the largest elided data (n= 53, m= 20, total N s = 30M), we nd an average F XEB >0.1% with 5˙con dence, where ˙includes both systematic and statistical uncertainties.

    The corresponding full circuit data, not simulated but archived, is expected to show similarly signi cant delity. For m= 20, obtaining 1M samples on the quantum processor takes 200 seconds, while an equal delity classical sampling would take 10,000 years on 1M cores, and verifying the delity would take millions of years. DETERMINING THE CLASSICAL COMPUTATIONAL COST We simulate the quantum circuits used in the exper- iment on classical computers for two purposes: verify- ing our quantum processor and benchmarking methods by computing F XEB where possible using simpli able circuits (Fig.4a), and estimating F XEB as well as the classical cost of sampling our hardest circuits (Fig.4b).

    Up to 43 qubits, we use a Schr odinger algorithm (SA) which simulates the evolution of the full quantum state; the Ju lich supercomputer(100k cores, 250TB) runs the largest cases. Above this size, there is not enough RAM to store the quantum state [42]. For larger qubit num- bers, we use a hybrid Schr odinger-Feynman algorithm (SFA)[43] running on Google data centers to compute the amplitudes of individual bitstrings. This algorithm breaks the circuit up into two patches of qubits and e - ciently simulates each patch using a Schr odinger method, before connecting them using an approach reminiscent of the Feynman path-integral.

    While it is more memory- e cient, SFA becomes exponentially more computation- ally expensive with increasing circuit depth due to the exponential growth of paths with the number of gates connecting the patches. To estimate the classical computational cost of the supremacy circuits (gray numbers, Fig.4b), we ran por- tions of the quantum circuit simulation on both the Sum- mit supercomputer as well as on Google clusters and ex- trapolated to the full cost. In this extrapolation, we account for the computational cost scaling with F XEB, e.g. the 0.1% delity decreases the cost by 1000[43, 44]. On the Summit supercomputer, which is currently the most powerful in the world, we used a method inspired by Feynman path-integrals that is most e cient at low depth[44{47].

    At m= 20 the tensors do not reasonably t in node memory, so we can only measure runtimes up to m= 14, for which we estimate that sampling 3M bitstrings with 1% delity would require 1 year. 6 On Google Cloud servers, we estimate that perform- ing the same task for m= 20 with 0:1% delity using the SFA algorithm would cost 50 trillion core-hours and consume 1 petawatt hour of energy. To put this in per- spective, it took 600 seconds to sample the circuit on the quantum processor 3 million times, where sampling time is limited by control hardware communications; in fact, the net quantum processor time is only about 30 seconds. The bitstring samples from this largest circuit are archived online. One may wonder to what extent algorithmic innova- tion can enhance classical simulations. Our assumption, based on insights from complexity theory, is that the cost of this algorithmic task is exponential in nas well as m. Indeed, simulation methods have improved steadily over the past few years[42{50].

    We expect that lower simula- tion costs than reported here will eventually be achieved, but we also expect they will be consistently outpaced by hardware improvements on larger quantum processors. VERIFYING THE DIGITAL ERROR MODEL A key assumption underlying the theory of quantum error correction is that quantum state errors may be con- sidered digitized and localized [38, 51]. Under such a dig- ital model, all errors in the evolving quantum state may be characterized by a set of localized Pauli errors (bit- and/or phase- ips) interspersed into the circuit. Since continuous amplitudes are fundamental to quantum me- chanics, it needs to be tested whether errors in a quantum system could be treated as discrete and probabilistic. In- deed, our experimental observations support the validity of this model for our processor. Our system delity is well predicted by a simple model in which the individ- ually characterized delities of each gate are multiplied together (Fig

    4). To be successfully described by a digitized error model, a system should be low in correlated errors. We achieve this in our experiment by choosing circuits that ran- domize and decorrelate errors, by optimizing control to minimize systematic errors and leakage, and by design- ing gates that operate much faster than correlated noise sources, such as 1=f ux noise [37]. Demonstrating a pre- dictive uncorrelated error model up to a Hilbert space of size 253 shows that we can build a system where quantum resources, such as entanglement, are not prohibitively fragile. WHAT DOES THE FUTURE HOLD?

    Quantum processors based on superconducting qubits can now perform computations in a Hilbert space of di- mension 253 ˇ9 1015, beyond the reach of the fastest classical supercomputers available today. To our knowl- edge, this experiment marks the rst computation that can only be performed on a quantum processor. Quan- tum processors have thus reached the regime of quantum supremacy. We expect their computational power will continue to grow at a double exponential rate: the clas- sical cost of simulating a quantum circuit increases expo- nentially with computational volume, and hardware im- provements will likely follow a quantum-processor equiv- alent of Moore’s law [52, 53], doubling this computational volume every few years. To sustain the double exponen- tial growth rate and to eventually o er the computational volume needed to run well-known quantum algorithms, such as the Shor or Grover algorithms [19, 54], the engi- neering of quantum error correction will have to become a focus of attention. The Extended Church-Turing Thesis” formulated by Bernstein and Vazirani [55] asserts that any reasonable” model of computation can be e ciently simulated by a Turing machine. Our experiment suggests that a model of computation may now be available that violates this assertion.

    We have performed random quantum circuit sampling in polynomial time with a physically realized quantum processor (with su ciently low error rates), yet no e cient method is known to exist for classical comput- ing machinery. As a result of these developments, quan- tum computing is transitioning from a research topic to a technology that unlocks new computational capabilities. We are only one creative algorithm away from valuable near-term applications. Acknowledgments We are grateful to Eric Schmidt, Sergey Brin, Je Dean, and Jay Yagnik for their executive sponsorship of the Google AI Quantum team, and for their continued engagement and support. We thank Peter Norvig for reviewing a draft of the manuscript, and Sergey Knysh for useful discussions.

    We thank Kevin Kissel, Joey Raso, Davinci Yonge-Mallo, Orion Martin, and Niranjan Sridhar for their help with simulations. We thank Gina Bortoli and Lily Laws for keeping our team organized. This research used resources from the Oak Ridge Leadership Computing Facility, which is a DOE O ce of Science User Facility supported un- der Contract DE-AC05-00OR22725.

    A portion of this work was performed in the UCSB Nanofabrication Facility, an open access laboratory. Author contributions The Google AI Quantum team conceived of the experiment. The applications and algorithms team provided the theoretical foundation and the speci cs of the algorithm. The hardware team carried out the experiment and collected the data. The data analysis was done jointly with outside collaborators.

    [1]Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467{488 (1982).

    [2]Devoret, M. H., Martinis, J. M. & Clarke, J. Mea- surements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased josephson junction. Phys. Rev. Lett 55, 1908 (1985).

    [3]Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy-level splitting between two macroscopic quan- tum states of charge coherently superposed by josephson coupling. Phys. Rev. Lett. 79, 2328 (1997).

    [4]Mooij, J. et al. Josephson persistent-current qubit. Sci- ence 285, 1036 (1999).

    [5]Wallra , A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrody- namics. Nature 431, 162 (2004).

    [6]Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007).

    [7]You, J. Q. & Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011).

    [8]Preskill, J. Quantum computing and the entanglement frontier. Rapporteur talk at the 25th Solvay Conference on Physics, Brussels (2012).

    [9]Aaronson, S. Certi ed randomness from quantum supremacy. In preparation .

    [10]Hastings, M. B. Classical and Quantum Bounded Depth Approximation Algorithms. arXiv e-prints arXiv:1905.07047 (2019). 1905.07047.

    [11]Kechedzhi, K. et al. E cient population transfer via non- ergodic extended states in quantum spin glass. arXiv e-prints arXiv:1807.04792 (2018). 1807.04792.

    [12]Somma, R. D., Boixo, S., Barnum, H. & Knill, E. Quan- tum simulations of classical annealing processes. Phys. Rev. Lett. letters 101, 130504 (2008).

    [13]McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural net- work training landscapes. Nat. Comm. 9, 4812 (2018).

    [14]Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. arXiv:1810.03787 (2018).

    [15]Bravyi, S., Gosset, D. & K onig, R. Quantum advantage with shallow circuits. Science 362, 308{311 (2018).

    [16]Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head- Gordon, M. Simulated quantum computation of molecu- lar energies. Science 309, 1704{1707 (2005).

    [17]Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014). [18]Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8, 031022 (2018).

    [19]Shor, P. W. Algorithms for quantum computation: dis- crete logarithms and factoring proceedings. Proceedings 35th Annual Symposium on Foundations of Computer Science (1994).

    [20]Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cle- land, A. N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    [21]Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500{503 (2014).

    [22]C orcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four supercon- ducting qubits. Nat. Commun. 6, 6979 (2015).

    [23]Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441 (2016).

    [24]Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018).

    [25]Aaronson, S. & Chen, L. Complexity-theoretic founda- tions of quantum supremacy experiments. In 32nd Com- putational Complexity Conference (CCC 2017) (2017).

    [26]Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195{199 (2018).

    [27]Bremner, M. J., Montanaro, A. & Shepherd, D. J. Average-case complexity versus approximate simulation of commuting quantum computations. Phys. Rev. Lett. 117, 080501 (2016).

    [28]Bouland, A., Fe erman, B., Nirkhe, C. & Vazi- rani, U. Quantum supremacy and the com- plexity of random circuit sampling. Preprint at https://arxiv.org/abs/1803.04402 (2018).

    [29]See supplementary information .

    [30]Vool, U. & Devoret, M. Introduction to quantum electro- magnetic circuits. Int. J. Circ. Theor. Appl. 45, 897{934 (2017). 8

    [31]Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling circuits. Phys. Rev. Lett. 113, 220502 (2014).

    [32]Yan, F. et al. A tunable coupling scheme for implement- ing high- delity two-qubit gates. Phys. Rev. Applied 10, 054062 (2018).

    [33]Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515 (2007).

    [34]Je rey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

    [35]Chen, Z. et al. Measuring and suppressing quantum state leakage in a superconducting qubit. Phys. Rev. Lett. 116, 020501 (2016).

    [36]Klimov, P. V. et al. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121, 090502 (2018).

    [37]Yan, F. et al. The ux qubit revisited to enhance coher- ence and reproducibility. Nat. Commun. 7, 12964 (2016).

    [38]Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    [39]Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized benchmarking of quantum pro- cesses. Phys. Rev. Lett. 106, 180504 (2011).

    [40]Cross, A. W., Magesan, E., Bishop, L. S., Smolin, J. A. & Gambetta, J. M. Scalable randomised benchmarking of non-cli ord gates. NPJ Quantum Information 2, 16012 (2016).

    [41]Wallra , A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    [42]De Raedt, H. et al. Massively parallel quantum computer simulator, eleven years later. Comput. Phys. Commun. 237, 47 { 61 (2019).

    [43]Markov, I. L., Fatima, A., Isakov, S. V. & Boixo, S. Quantum supremacy is both closer and farther than it appears. Preprint at https://arxiv.org/abs/1807.10749 (2018).

    [44]Villalonga, B. et al. A exible high-performance sim- ulator for the veri cation and benchmarking of quan- tum circuits implemented on real hardware. Preprint at https://arxiv.org/abs/1811.09599 (2018).

    [45]Boixo, S., Isakov, S. V., Smelyanskiy, V. N. & Neven, H. Simulation of low-depth quantum circuits as complex undirected graphical models. Preprint at https://arxiv.org/abs/1712.05384 (2017).

    [46]Chen, J., Zhang, F., Huang, C., Newman, M. & Shi, Y. Classical simulation of intermediate-size quantum circuits. Preprint at https://arxiv.org/abs/1805.01450 (2018).

    [47]Villalonga, B. et al. Establishing the quantum supremacy frontier with a 281 p op/s simulation. Preprint at https://arxiv.org/abs/1905.00444 (2019).

    [48]Pednault, E. et al. Breaking the 49-qubit barrier in the simulation of quantum circuits. Preprint at https://arxiv.org/abs/1710.05867 (2017).

    [49]Chen, Z. Y. et al. 64-qubit quantum circuit simulation. Sci. Bull. 63, 964{971 (2018).

    [50]Chen, M.-C. et al. Quantum teleportation-inspired al- gorithm for sampling large random quantum circuits. Preprint at https://arxiv.org/abs/1901.05003 (2019).

    [51]Shor, P. W. Scheme for reducing decoherence in quan- tum computer memory. Phys. Rev. A 52, R2493{R2496 (1995).

    [52]Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169{1174 (2013).

    [53]Mohseni, M. et al. Commercialize quantum technologies in ve years. Nature 543, 171 (2017).

    [54]Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. letters 79, 325 (1997).
    [55]Bernstein, E. & Vazirani, U. Quantum complexity the- ory. Proc. 25th Annual ACM Symposium on Theory of Computing (1993). from my iPhone
    more children: (3)
  • 000001010000000108663551
    Synapse creator 19.09.2019 - 10:39:49 level: 1 UP [28K] New Hardlink
    Sober October 2019

    Sober October 2019 zacina v utorok 1.10. a konci vo stvrtok 31.10.

    Pravidla su jednoduche:
    1: Ostat triezvy.
    2. Hit the gym.

    Toto je miesto pre vzajomnu motivaciu a inspiraciu. Niekto bude menej chlastat, iny pojde full monk mode. Niekto urobi zopar zdechlych klikov, iny odmaka 5 treningov za tyzden a bude meditovat. Nie je to dolezite. Dolezite je, udrzat si spravny spirit po cely mesiac, nevysrat sa na to, nevzdat to po prvom zavahani, motivovat sam seba a ostatnych.

    Trolling a podryvanie od 1.10. mazem, toto nie je demokracia.
    more children: (33)
  • 000001010000000108662052
    Synapse creator 13.09.2019 - 08:45:22 (modif: 13.09.2019 - 08:46:30) level: 1 UP [21K] New Hardlink Content changed
    V ramci mojho byvaleho zamestnania sme si s kolegami robili prednasky o veciach, ktore nas zaujimaju, ale netykaju sa priamo prace. Este pred mojim odchodom z firmy, par mesiacov dozadu, som si nachystal slidy a pripravil prednasku o QC, ale spustili sa mi podivne zdravotne problemy a nikdy som sa nedostal k samotnej prezentacii. No pri rozlucke som prislubil, ze tu prednasku spravim, az sa dam dokopy. Vcera som to teda skusil a nahral som si to.

    je to dlhe, relevantna cast zacina 5:45. nie som sice ziadny veritasium, ale myslim, ze video ma sancu pomoct ludom, ktori nemaju o QC ani sajnu. zaroven by som sa chcel v podobnych cinnostiach zlepsit, tak idem s kozou na trh. veci som sa snazil v prednaske co najviac zjednodusit a neviem, ci som to niekedy neprehnal, resp. netusim v kolkych veciach som ja sam (samouk) uplne mimo, takze bacha na to.

    more children: (4)
  • 000001010000000108661830
    Synapse creator 12.09.2019 - 14:26:23 (modif: 13.09.2019 - 18:56:05) level: 1 UP [1K] New Hardlink Content changed
    Dnes (13.9.) robíme ďalšiu Elektro Haflu, party zameranú na klubový zvuk blízkeho východu v Novej Cvernovke, tentokrát v spojení s [fjúžn] festivalom.
    Príde Arabian Panther, Amar du Désert, DJ Ramzy al Spinoza a otvorí to Mooshak.

    FB event: https://www.facebook.com/events/938872153112098/
    Sú tam aj links na umelcov, odporúčam, je to výborná hudba.

    18:00 - Diskusia: Stredoeurópske fórum: O slobode prejavu -> event: https://www.facebook.com/events/2528863677181460/

    Park de Palma:
    19:00 - 22:00 Mooshak

    Skrytý bar:
    22:00 - 00:00 Amar Du Désert
    00:00 - 02:00 النمر العربي Arabian Panther
    02:00 - 04:00 Dj RAMZY al spinoza

    Lístky na Elektro Haflu sú k dispozícii za 5€ tu: https://bit.ly/2kEsgN1
    Na mieste 7€.

    Jo a budeme tam oslavovať s id g_da naše tri dekády na tomto svete. Ak ešte nebudeme na šalát, môžete nás pozvať na drink :)

  • 000001010000000108659133
    Synapse creator 04.09.2019 - 12:20:08 level: 1 UP New Hardlink
    Cancel the ostracization of id 644892 (azazel) ?

    (based upon culoar request https://kyberia.sk/id/8658790/ )
    more children: (2)
  • 000001010000000108658195
    Synapse creator 02.09.2019 - 14:01:35 level: 1 UP [4K] New Hardlink
    ked uz sa lobuje za config kyberky:

    momentalne parametre na ostrakizaciu su nastavene tak, aby sa velmi lahko dal vypudit clovek z kyberie - konkretne 12K.

    Je to pohodlne pre tych, ktori nie su tolerantni voci nazorom ostatnych, ak sa teda nezhoduju s ich vlastnymi. Ked sa outkastoval nedavno azazel, malo to aspon svoje opodstatnenie, kedze vela ludi ho malo v silence, ale aj tak mi prisla hodnota 12K malo.

    Vzhladom na to, ze z postov svena alebo max.g nevyplyva, ze propaguju nacisticke nazory, ako sa to tu oznacuje, vyzyvam ludi, ktori nesuhlasia s tym, aby boli ostrakizovani, aby zahlasovali za zvysenie potrebneho poctu na ostrakizaciu tu: https://kyberia.sk/id/7823390 alebo za vypnutie ostrakizacneho skriptu tu: https://kyberia.sk/id/7844623

    v tomto momente je hodnota 12K s rozdielom 3 kaciek pred hodnotou 77K.

    Kedze mi to pride, ze sa tu deje hon na carodejnice, ktory kyberii podla mna nijak neprispeje, zvazte prosim zahlasovania za vyssiu hodnotu potrebnu na zabanovanie cloveka.
    more children: (2)
  • 000001010000000108656318
    Synapse creator 26.08.2019 - 13:14:48 (modif: 26.08.2019 - 16:11:38) level: 1 UP [28K] New Hardlink Content changed
    Ahoj, spolu s neOrganizaciou PISK.cz (pisk.sk) sme sa rozhodli pomoct investigativnej zurnalistike na Slovensku a v Cechach. Nasim cielom je pomoct nasadit softver, SecureDrop, ktory sluzi na bezpecne prijimanie dokumentov a komunikacie z anonymnych zdrojov. Aby sme sa mohli posunut dalej, tak potrebujeme prelozit potrebny softver do nasich jazykov.

    Aktualny stav je cestina 37% hotova, slovencina 75%

    Tu je jednoduchy navod ako na to -> https://docs.securedrop.org/en/release-0.13.1/development/l10n.html

    Ak si najdete chvilu cas, budeme radi za vasu pomoc s prekladom (pripadne za zdielanie s niekym kto by mohol/vedel pomoct) a dakujeme vsetkym ktori doteraz tak urobili!

    e: external_access = true // tak mozete kludne zdielat cez ine socialne media
    more children: (2)
  • 000001010000000108641379
    Synapse creator 04.07.2019 - 15:40:17 level: 1 UP New Hardlink

    Už týždeň pred otvorením brán 23-teho ročníka Pohody sme naplnili kapacitu nášho festivalu. Lístky na Pohodu sa už nedajú kúpiť na našom webe, ani u oficiálnych predpredajcov a nebude to možné ani na bránach. V našom shope ešte ostáva posledných 100 miest v stanovom hoteli Tent Inn a približne 500 miest na parkovanie v sektore P4 či lístky na mimoriadnu dopravu na festival. Vypredaná Pohoda je skvelou správou pre celý organizačný tím a perfektný darček k dnešným Michalovým narodeninám. Ďakujeme za váš obrovský záujem a tešíme sa na vás už o týždeň na Pohode 2019.
  • 000001010000000108636571
    Synapse creator 18.06.2019 - 14:04:22 (modif: 18.06.2019 - 14:06:18) level: 1 UP [4K] New Hardlink Content changed
    more children: (1)
  • 000001010000000108631401
    Synapse creator 31.05.2019 - 21:51:03 (modif: 31.05.2019 - 21:52:57) level: 1 UP [4K] New Hardlink Content changed
    Ahojte, trosku last-minute notice, ale dnes robime prvu Elektro Haflu, noc venovanu klubovej hudbe Blizkeho vychodu & beyond.

    Lineup: DJ Ramzy al Spinoza, Tropikal Camel, Mooshak, DJ Džbán

    + dnešné menü vodných fajok (already tried, výborné tabaky!)

    Príďte :)

    fb event: https://www.facebook.com/events/749503308778458
  • 000001010000000108623146
    Synapse creator 08.05.2019 - 11:51:49 (modif: 08.05.2019 - 12:42:23) level: 1 UP [10K] New Hardlink Content changed
    Ahoj. Ok, pokúsim sa aspoň zbežne vysvetliť o čo tu beží. Každopádne ak vieš anglicky, tak odporúčam prečítať si rovno Kyberia's Open Ledger Roadmap článok, tam je všetko popísané o dosť detailnejšie.

    Takže stručne a polopate: nie, pridanie príspevku Ťa nestojí 300K. Ako si všimneš tu, všetky transakcie typu P ("P" ako publikuj) stoja tak ako doposiaľ vždy v minulosti jedno K.

    A teraz k veci: dlhé roky fungovala ekonomika kyberie prudko inflačným spôsobom, t.j. každý deň dostal každý užívateľ 30K takpovediac z ničoho, v podstate sa jednalo o tzv. "infinite supply" stav kde množstvo K ktoré boli vypustené do obehu mohlo byť teoreticky nekonečné.

    Aj napriek tomu že také K nemali prakticky žiadnú hodnotu (akokoľvek veľké číslo vydelené nekonečnom je nula), veľa ľudí si ku K vypestovalo určitý sentiment akoby sa jednalo o určitý nositeľ hodnoty a viac ako polovina z 500 užívateľov ktorý odpovedali v ankete na maine: dokonca aj takej prťavo malej časti nekonečna prisúdila monetárnu hodnotu vyššiu ako 1 cent.

    K čomu došlo v prechode na Kyberia Open Ledger alias KOL, alias Kybchain, ktorý sa spustil v júni minulého roka, bolo, že sa stanovilo maximálne množstvo obeživa na 10 miliónov K a vytvorili sa mechanizmy na to aby toto obeživo vrámci komunity začalo cirkulovať.

    Ako nás poučila nedávna minulosť (viz. úspech Bitcoinu či iných mien kde je maximálne množstvo obeživa pevne stanovené), ekonomické hry kde je všetkým účastníkom jasné koľko obeživa cirkuluje, sú pre ľudí značne príťažlivé.

    Z akéhosi dôvodu sú ľudia od nepamäti schopní - a častokrát aj viac ako ochotní - určitým znakom ktoré kódujú informáciu o priebehu sociálnych interakcií (niekedy pre také "znaky ktoré kódujú informáciu o priebehu sociálnych interakcií" aj slovo "token", v minulosti sa často používalo slovo "peniaze") priradiť reálnu hodnotu ajkeď tam na začiatku žiadna reálna hodnota nemusela byť.

    A ako nám naznačil Bitcoin&co. vedomosť o maximálnom množstve obeživa ktoré v systéme cirkuluje je faktorom ktorý pri "reifikácii", zreálňovaní hodnoty určitého tokenu, zohráva pre ľudí dôležitú rolu.

    To, k čomu došlo na kyberii pre prechode z "infinite supply" na "market cap = 10megaK" systému je súčasťou takého zreálňovania. Kčka už niesú len pičovinka ktorou sa kybčatrolli môžu vzájomne tlapkať po ramenách, stávajú sa reálnym tokenom ktorý možno prijať, odovzdať (napr. pomocou funkcie give) či naň dokonca naviazať transakcie z reálneho sveta.

    Ja som napr. prednedávnom pár stovák K vymenil za jednu knižku, a jeden starý časák za pár desiatok K pustil z rúk...

    Po vysvetlení dôvodov ktoré ma viedli k implementácii tejto, "srandy" teraz k druhej časti Tvojej otázky a totiž, čo je to "demurrage" a prečo vlastne.

    Demurrage si môžeš laicky vysvetliť ako najrovnejšiu zo všetkých daní. Daň tak rovnú, až sa prakticky jedná o prírodný zákon (niečo ako entropia v termodynamike, zdravím id niekt0). Je prejavom princípu, že všetko čo existuje v čase postupne zaniká a zaniká to preto, aby mohlo byť podporené niečo čo ešte do času nevstúpilo.

    V kontexte Kyberie bolo zavedenie "demurrage" nutnosťou, keď som chcel zachovať pôvodnú funkcionalitu ktorú možno popísať slovami: "každý užívateľ dostal určitý denný prídeľ K". V minulsti to nebol problém, Kčka sa generovali "ex nihilo".

    Avšak za situácie kedy je, ako som vyššie popísal, počet K konečný a pevne daný, môže byť prídeľ nových K zabezpečený len tak, že tie K niekde inde zoberieš.

    Preto sa na kyberii aplikuje demurrage, pričom o parametroch ktoré určujú ako veľmi a ako často sa demurrage realizuje, rozhoduje a bude rozhodovať Agora, napr. tu https://kyberia.sk/id/8519102

    Technicky sa demurrage realizuje tak, že na serveroch kyberie sa v pravidelných intervaloch spúšťa skript, ktorý zo všetkých účtov evidovaných v KOL registri odoberie určitú časť a tú presunie na bota menom Ganéš.

    V ďaľšom kroku následne Ganéš všetko vyzbierané rozdá ľuďom na základe určitých kritérií, o ktorých tiež rozhoduje Agora.

    Od včera večera už by sa malo všetko vyššie popísané diať úplne automaticky, bez nutnosti zásahu ľudského operátora.

    Toť vskrakte na začiatok všetko, je toho samozrejme viac - zatiaľ som prakticky vôbec nespomenul blockchain či crypto-signatúry - ale ako jemná iniciácia do problematiky to bude dúfam stačiť.


    Wenn es etwas im Leben gibt, dass die menschliche Seele anspricht, dann ist es Liebe und Schönheit.
    more children: (3)
  • 000001010000000108610327
    Synapse creator 28.03.2019 - 01:10:19 (modif: 31.07.2019 - 15:03:25) level: 1 UP [5K] New Hardlink Content changed
    V sekcii kybchain pribudla možnosť darovať ľubovoľnú časť Tvojich tokenov na ľubovoľného iného užívateľa, funguje to následovne:

    ako RECEPTOR_ID (povinny udaj) uvedieš kyberia ID človeka ktorého chceš "obdarovať"
    ako GIVE_AMOUNT (povinny udaj) uvedieš obnos ktorý chceš podarovať môže byť aj veľmi malý zlomok
    ako MEMO (nepovinny udaj) môžeš uviesť popis Tvojho Daru, je to niečo ako "variabilný symbol"
    ako PASSWORD (povinný údaj) uvedieš Tvoje kyberia heslo (triviálna forma zabezpečenia proti krádeži ale stále IMHO lepšie ako nič)

    Následne klikneš na tlačítko GIVE a voilá, do transakčného registra práve pribudla transakcia typu G.

    * samozrejme že sa tu bavíme len o daroch a darovaní, o predaji či iných aktivitách na ktoré sa vzťahujú explicitné zákonné regulácie tu, samozrejme ;), nieje reč...

    Wenn es etwas im Leben gibt, dass die menschliche Seele anspricht, dann ist es Liebe und Schönheit.
  • 000001010000000108604486
    Synapse creator 11.03.2019 - 17:26:18 (modif: 12.03.2019 - 15:08:22) level: 1 UP [2K] New Hardlink Content changed
    edit: kvôli chorobe zrušené :/ bude nový termín, aj s debatou, be in touch

    zajtra (12.3.) sa v novom divadelnom priestore v Bratislave, na Mieste M na Mickiewiczovej 2, koná repríza vNořen, hry zameranej na feminizmus na motívy Ibsenovej Nory. Po divadle bude nasledovať diskusia s babami z Kundy crew.

    Začiatok je o 19:30, lístky sú v predaji cez Tootoot.fm tuto: https://tootoot.fm/en/events/5c77fb50018043028c83f64a?fbclid=IwAR0qPRkKF0mpL0wBZBpTW4lvM5h9GY6YeoxQgJ0OmIYmHlW-T_aVM76QA8A

    Facebook event tu: https://www.facebook.com/events/353612021911836/

    Môžem odporučiť, radi vás tam uvidíme :)

  • 000001010000000108597490
    Synapse creator 19.02.2019 - 13:08:23 level: 1 UP [4K] New Hardlink
    Ahojte, 9. marca budú bristolské legendy Giant Swan v Novej Cvernovke na Nočnej, veľmi sa na to tešíme. Pridajte sa k nám, bude to veľkolepé :)


    Nočná, 9.3. @ Nová Cvernovka ▅ Giant Swan―UK ▀ Loktibrada―SK ▌Její Vály―CZ ✚ friends from Matwe Kaščák on Vimeo.

    FB event: https://www.facebook.com/events/331740937435965/
  • 000001010000000108582802
    Synapse creator 09.01.2019 - 02:01:52 (modif: 09.01.2019 - 02:09:10) level: 1 UP [7K] New Hardlink Content changed
    Je to jasne, ukulele kyberie, zjednotte sa!


    Co postovat?

    - obrazky ukulele
    - songy (akordy)
    - techniky (strumming patterns, ...)
    - triky (vum vum vum ending!)

    more children: (7)
  • 000001010000000108582792
    Synapse creator 09.01.2019 - 00:20:18 (modif: 10.01.2019 - 13:10:46) level: 1 UP [3K] New Hardlink Content changed
    Táto nóda obsahuje zoznamy tzv. "pečatí", ktoré v kombinácii s blokmi uloženými napr. tu https://kyberia.sk/id/8519541 alebo tu: here http://kyberia.de sú a na pár najbližších rokov asi aj budú všetkým,čo potrebuješ k získaniu nezvratného a neprepísateľného obrazu ekonomických tokov Kyberie v ľubovoľnom časovom bode po 28.6.2018.

    Stav ekonomiky Kyberie je nezvratne fixovaný vďaka použitiu rozhrania https://opentimestamps.org/ ktoré využíva kanonický Bitcoin blockchain ako momentálne najautoritatívnejšieho notára planéty Zem.

    This node is a repository of timestamps associated to blocks of Kyberia's Open Ledger. In combination with block data itself (stored, for example, here https://kyberia.sk/id/8519541 or here http://kyberia.de/) the stamps stored in this folder are all one needs to demonstrate that the state of Kyberia's Ledger in moment T had been such and such.

    Uses https://opentimestamps.org/ to exploit the canonic BTC blockchain as the most authoritative notary currently available on Gaia.
  • 000001010000000108580402
    Synapse creator 02.01.2019 - 18:39:46 (modif: 18.07.2019 - 16:25:24) level: 1 UP [6K] New Hardlink Content changed
    Freudov kopernikovsky objav tu stale caka na nase znovuobjavovanie. Tato veta je tak trochu freudiansky PUN, slovna narazka, ktora je tiez jedna z nenapadnych operacii (spolu s prerieknutiami, zabudaniami, omylmi, vtipmi, snami…), cez ktore sa Freud dopracoval k obrysom nevedomia. Co mal povodne byt fyziologicky projekt, ktory chcel namapovat fyziku nervov na zvlastnu psychiku patologie, sa v case (Freudova pracovna metoda bola neustale prepracovavanie teorie pomaly v kazdom dalsom clanku- jeho texty su casto len hypotezy, ktore priamo dalej v nich odmieta a uz len preto su nezvycajne citanie) stale viac posuval do oblasti symbolickeho vyjadrenia nevedomia- nedokonalych dynamickych, funkcionalnych a topografickych opisov, ktorym vzdy nieco uchadzalo. Problem bol jednak v historicky nedostatocne rozvinutej neurovede, no dolezitejsie bolo, ze casom sa ukazovalo, ze lepsi opis fungovania nevedomia je jazykovy ako fyzikalny. Co vidime dnes, je aj snaha ozivit Freuda cez jeho prvotny projekt cez aktualne vedecke metodologie, niekedy sa tomu hovori aj neuropsychoanalyza.

    Freudove prvotne intuitivne (Freud mal obdivuhodny vedecko-intuitivny tah na branu- predpovedal napr. synapsy, alebo aj objavy antropologie,lingvistiky dlho po nom) formulacie si vsak pockali na iny teoreticky pokrok, strukturalizmus ci pocitacovu vedu a teorie hier. A tu sme pri Lacanovi, ktory takto znovuobjavil Freuda. Ocistil ho celkom od reduktivneho biologizmu a nevedomie postavil do pozicie strukturacie jazykom.

    Co je take dolezite pri tomto objave? Nevedomie je primarne. To je najdrsnejsie vyjadrenie preklopenia ludskej reality s dalekosiahlymi dosledkami, ak by ziskali svoju spolocensku vahu. Nejde o nejaku oblast vydelenu z nasej skusenosti- nasa skusenost je nim zalozena a prepletena. A ked hovorim o nas, nemyslim tak celkom to, co si pod “nami” bezne predstavujeme. To, co sa casom Freudovi podarilo ukazat bolo, ze Nevedomie “hovori” inak ako my- ze subjekt nevedomia a ego sa neprekryvaju. Mechanizmy nevedomia- ako myslenie (jeden by si nemyslel, ze je vysada nevedomej skusenosti)- prebiehaju casto bez zaznamenania. A prave neurozy ci psychozy nam cez rec symptomov (ale aj napr. vtipov) sprostredkuju tuto neznamu risu, ktora preto operuje a vladne potichu u kazdeho, len nie kazdy si vytvori skrze potlacenie patologicky utvar- comu ludovo hovorime nepekne dusevna porucha.

    Lacanov navrat k Freudovi v nom otvara tri registre vyjadrenia ludskej skusenosti: imaginarny, symbolicky a realny- strukturalizmus nikdy celkom nezvitazil, nevedomie preto nie je len suchy strojovy kod, na ktorom bezia nase ega. Freud to uz videl sam- tento kod vzdy zakryva urcitu nedosiahnutelnost opisu reality. A propos, dalsia dolezita crta tohto objavu je primarne vztahovanie sa k svetu: ludske zvierata nie su nikdy nudni pozorovatelia, ktori racionalne vyhodnocuju svoje dalsie kroky- zakladna skusenost je zalozena na tuzbe- tuzba, ktora nie je emociou, tuzba, ktora plodi tuzbu, tuzba, ktora ma podobu zakona, tuzba, ktora pohana zivot, a ktora ho po prekroceni hranice zakona aj znici - hranica je vzdy len po sprostredkovatelnu realitu, realita nie je nikdy priamo dana.

    Lacanov navrat bol hlavne klinicky navrat, vsetko co robil bolo pre rozvoj psychoanalytickej skusenosti vo Freudovom duchu. Tento specialny priestor medzi analytikom a analyzovanym je priestorom, ktory je predurceny pre vyslovne dotknutie sa a otvorenie nevedomia- analytik je ten, kto vie ako v tzv. transferencnej situacii analyzovaneho “zrkadlit” tak, aby svoje naviazania tuzby, ktore ho zvazuju, otvoril, aby sa takto sam (dolezite) oslobodil, samozrejme nie celkom, lebo tuzba vzdy zvazuje. Tato analyticka situacia je celkom odlisna skusenost s velkymi etickymi presahmi, ktora dala spolocnosti velke moznosti ako nebyt celkom otrokom svojho pana nevedomia.


    Freud-Complete Works
    more children: (22)
  • 000001010000000108579277
    Synapse creator 29.12.2018 - 11:27:40 (modif: 29.12.2018 - 11:40:07) level: 1 UP [89K] New Hardlink Content changed
    tento naval patosu som proste musel, sorry.

    prisiel som domov z afteru, pretoze neviem prestat afterit. bojim sa ze to na mna spadne, ked sa cela ta vlna alkoholu a ineho utne a ja si uvedomim ze tu nie si. bola si jednym z pilierov, ktore mi ukazovali ways ako mam viest svoj zivot, alebo skor ako ho spracovat and stay sharp . bola si tak mega pohotova, smart, politicka a zaroven sebakriticka, nikdy som ti nepovedal ako mnoho som sa od teba naucil. ten way of life, ten drzy grin and sticking it to the man. ten tvoj prijebany parfem, ktory som citil zakazdym ked som niekam prisiel a vedel som, ze na mna spoza rohu vybehnes, objimes ma a povies mi nejake nove veci.

    mal som napicu rok a celou svojou existenciou som sa snazil o to, aby bol napicu menej. absolutne mi to nevyslo a valal som sa v totalnom shite. a vzdy som si spomenul na to, ze cim si si musela prejst aj ty. v porovnani s tebou boli moje picoviny uplne nepodstatne a co bolo na tebe top, bol fakt, ze ked si celila davom, tak si hodila ten tvoj grin a s totalnou graciou si vsetko dokazala spacifikovat, jak level 1 v tetrise. bola si pre mna pilierom, ktory mi kedysi povedal, ze sa nemozeme vzdavat a musime ist dalej. ja som ostal. ty nie.mam vobec nejaku zaruku, ze to zvladnem a dam to? uz to zacina byt takym pravidlom, ze pocty sa riedia, tento piece vsak zabolel. ze ten nas vyjebany mindset ma vobec miesto na tomto svete a ze ci nas to vlastne vsetkych skor ci neskor nepohlti a nezozere? zacinam sa bat. ale mam v pici. bola si super skvela, inspirativna, naucil som sa od teba vela, byt troska punk, ale zaroven troska bookworm, ist si svoje argumenty a nebat sa za ne zapalene diskutovat. bola si velka a skvela, zivelna a vzdy tak troska o krok dalej. byt femme a zaroven tak nekompromisne radikal. jeden den v galerii, druhy den na metalovom koncerte. ked si zacala chodit opat von, tak som sa tomu potesil, pretoze ta energia co si so sebou nosila ma vzdy tak krasne nabila. bohuzial si vybuchla.

    nechcem ist spat, lebo ked sa zobudim, tak mi to cele jebne na hlavu. vcera som hral prurienta len preto, ze viem ze by si sa tomu potesila, track co nehram roky, ale pre teba by som ho hral aj 10 krat po sebe, len aby si nespravila tu hroznu picovinu. ale beztak nevladzem. tato doba nepraje kometam, skor centristom. nikdy na teba nezabudnem kata, bola si pre mna silnejsim vplyvom ako moja hocijaka femme fatale. in the end si ten diskurz diktovala ty. fuck everything. girl power forever.

    I roll with the Hell's Angels
    more children: (16)
  • 000001010000000108572917
  • 000001010000000108564728
    Synapse creator 14.11.2018 - 11:21:03 (modif: 14.11.2018 - 11:24:50) level: 1 UP New Hardlink Content changed

    Ahojte, príďte v sobotu na Koncert pre všímavých. Neviem, či poznáte to, prečo sa Koncert pre všímavých volá tak, ako sa volá, preto objasním. Fico totiž raz povedal, že si november 1989 "ani nevšimol". Tak my sme si ho teda všimli. A všímame si aj ďalšie veci. A nie je nám to jedno.
    Soundtrack k tomu bude viac než výživný.

    FB: https://www.facebook.com/events/245203713014659/

    Samostatný koncert za 29€, Večer bielych vrán za 12€, kombo dohromady za 35€.

    Lístky tu:
    Koncert pre všímavých + Večer bielych vrán

    Koncert pre všímavých

    Večer Bielych vrán

    viac na https://www.pohodafestival.sk
    more children: (1)
  • 000001010000000108545392
    Synapse creator 18.09.2018 - 10:19:05 (modif: 05.08.2019 - 17:39:52) level: 1 UP [47K] New Hardlink Content changed

    [|O čo ide?|]
    Hudobná kompilácia Late Night Tales na začiatku nového milénia dala priestor hudobným projektom, aby zostavili svoj vlastný výber hudby, ktorá mala ilustrovať ultimátny nočný mix. Zámerom tohto fóra je vytvárať vlastné hudobné kompilácie na vlastné témy.

    [|Ako na to?|]
    Cieľom je poskladať hudobnú kompiláciu na vopred zadanú tému buď v súboroch (mp3, flac) a zavesiť to niekde na stiahnutie, alebo vytvoriť playlist na niektorej zo streamovacích služieb (Spotify, Youtube, soundcloud etc.). Každý príspevok by mal obsahovať link na playlist (dl link, alebo link na spotify, youtube) a tracklist. Ak máte čas, pokojne k ním urobte vlastné booklety

    Tému zadáva vždy víťaz predošlého kola. Pokiaľ sa mu tému nechce zadávať, môže ju posunúť ďalej. Víťazom je zatiaľ ten, kto získal najviac k!. Platí limit na jednu kompiláciu pre jedného užívateľa, čiže nemôžete to tu zaspamovať štyrmi kompiláciami na jednu tému, ale poskladať tú najlepšiu. Rozsah trackov min 8- max 20. Na tému sú vždy vyhradené 3 týždne.
    Ak zadávate novú tému, dajte do názvu nody vždy LTN vol XY - názov témy. Príspevky vždy pridávajte pod túto nodu.

    Témou kompilácie môžu byť:
    1. Žánre a subžánre (Techno, downtempo, punk, dub, jazz, noise.... etc)
    2. Hudobné nástroje a mašiny (klavír, akordeón, saxafón, 909, potkaní chlp etc...)
    3. Nálada (Piatok večer, depresia, nedeľa ráno, leto, chill, dážď etc...)
    4. Obdobie (90's, 60's, ale aj rôzne kombinácie so žánrami f.e. 90's hip hop etc...)
    5. Lokality (Taliansko, USA, NYC, Detroit, Berlin, Slovensko, Spiš, Morava etc...


    LNT vol I. - Depresia Berlin 80's | LNT vol II. - (Post)industrial Suburbs | LNT vol III. - 90s Rave in the UK | LNT vol IV. - SKA Fever | LNT vol V. - Človek s gitarou | LNT vol VI. - Ošklivosť | LNT vol VII. - Vianočné neklišé | LNT vol VIII. - Hip Hop For a Better Future | LNT vol IX. - Rub a dub sound killaz | LNT vol X. - Za polárnym kruhom | LNT XI. - Po lakte od krvi | LNT XII. - Jar | LNT XIII. - Can you pass the acid test? | LNT XIV. - Nádej | LNT XV. - Eastern Hipster | LNT XVI.- Naštvaná teenagerka/naštvaný teenager | LNT XVII. - Roadtrip | LNT XVIII. - festivaly

    LNT vol I - zix | LNT vol II - zayo | LNT vol III - majkl | LNT vol IV - nubilis | LNT vol V - kyberbubus | LNT vol VI - ππ | LNT vol VII - Mju | LNT vol VIII - Kwisatz Haderach | LNT vol IX - Kwisatz Haderach | LNT vol X - StiX | LNT vol XI - Mju | LNT vol XII - or.lock | LNT vol XIII - Mju | LNT vol XIV - belo | LNT vol XV - nubilis

    more children: (28)
  • 000001010000000108544242
    Synapse creator 13.09.2018 - 23:29:45 level: 1 UP [22K] New Hardlink
    Pár rokov spať, som sa vás pýtala, či tu je niekto kto žije bez televízie a má dieťa. Ako to u vás vypadá. My sme 6-7 rokov doma televíziu nemali a uvažovali sme, či ju máme alebo nemáme kúpiť, keď sa narodila malá. Nekúpili sme. Dnešný príspevok bude o nás, ako dieťa vyrastala bez televízie - výhody a nevýhody ktoré som si za 5,5 roka všimla. Postoj je čisto subjektívny.

    1. nevýhody
    Naša dcéra nemá tak bohatú slovnú zásobu ako iné deti. Keď sa na deti sype celé roky audiovizuálna sprcha, tak si z toho definitívne musia niečo odniesť.

    Žijeme v ČR, a dcéra odmieta hovoriť po česky, preferuje slovenský jazyk ako ním hovoríme s manželom, a myslím si, že televízia by v tomto smere pre ňu mala prínos.

    Nemať doma televíziu znamená pre mňa ako pre matku neustále vytvárať program pre svoje dieťa. Niekedy je to frustrujúce. Stále nové hry, zaujímavosti, výlety, vychádzky. Jedna vec je, zabaviť dieťa raz za čas, druhá je, robiť to denne celé roky. Obzvlásť v zime, keď je pernamentne chorá.

    Nemá rada hluk a chaos zvuku - ktorý samozrejme vzniká v kolektíve detí. Najradšej má ticho a kľud - ako je doma.

    2. výhody
    Je kľudnejšia v porovnaní s ostatnými detmi. Deti dynamicky preskakujú z tém do tém, behajú hore dole, emócie im lietajú hore dole. Naše dieťa je plus mínus v stabilnej pohode.

    Má oveľa viac vyvinuté kritické myslenie ako iné deti. Odmieta slepo prijať čokoľvek sa jej predloží. Videla v televízií reklamu a pýtala sa - čo to je? Prečo to robia? A tak vo veku 5 rokov sa jej dostalo prvého ľahkého vysvetlenia čo je to reklama a aký je jej zmysel.

    Ako nie je zvyknutá na stabilné udržanie témy, tak dokáže dlho a systematicky rozoberať jednu vec, alebo tvrdohlavo ísť za svojím cieľom. Dlho - týždne, mesiace.

    Zostáva detsky nevinná, primerane k svojmu veku. Nemá vnemy o vraždách, hádkach, vypatých sitáciach ktoré by sa jej prostredníctvom médií dostali. Má svoj pekný detský svet.

    Najvačšia výhoda ale asi bude, že má zdravé detské sebavedomie. V školke všetky dievčatá túžia byť princezné alebo Elzy, a moja dcére sama sebe vlastná oznámila pani učiteľke, že ona bude na karnevale Veronkou (vola sa Verona, takže bola sama sebou)

    Je vidieť ako média ovplyvňujú deti v tom, čo je pekné a čo nie. Mať dlhé vlasy, ružové šaty, byť Elzou. Ona mala doteraz kratšie vlasy, pretože sa jej to páčilo a nechcela nosiť sponky. Po ostrihaní sa na seba usmiala do zrkadla a povedala - to sa mi páči, som pekná. Celú izbu má na modro - pretože modrý je vesmír.

    Pretože nie je mediálne ovplyvňovaná, tak často prichádza za nami s otázkami a chce vysvetlenie. Myslím, že komunikácia a blízkosť ktorá je s tým spojená, vytvára pevnejšie puto medzi nami.

    Na záver, je podľa mňa jedno či niekto televíziu má alebo nemá. Plynú z toho výhody aj nevýhody pre každé dieťa nakoniec vlastné. Ale pre rodičov ktorí sa k tomu kroku odhodlajú, tak musia počítať s tým, že dieťa im bude oveľa viac visieť okolo krku, na nohe, a mať nekonečné množstvo otázok. Bude nutné dieťa zapájať do procesu varenia, upratovania, debát a všetkého čo príde, pretože telka nebude pre moment rozptýlenia.

    Telku sme 6 mesicov spať kúpili, aby sme pomohli malej k čestine. A teda bol vôbec boj, aby od nej nezdrhla. Prvý mesiac sa na ňu dokázala pozerať cca 10 sekúnd a potom ju vypla. Teraz dokáže pozerať kúzelnú školku, ale len tú časť kde hrajú reálne ľudia a rozprávku nie je schopná dopozerať ani jednu. Nechce, nemá záujem, nepáči sa jej to. Ale nechávame si ju, má tú možnosť, uvidíme čo bude ďalej.
    more children: (15)
  • 000001010000000108527935
    Synapse creator 30.07.2018 - 09:47:23 (modif: 30.07.2018 - 10:27:42) level: 1 UP [36K] New Hardlink Content changed
    Naprgal som nieco na sposob fckbk newsfeedu, s tym rozdielom ze o tom co uvidite nerozhoduje marketing a algoritmy, ale len Vase bookmarky.

    Nulta verzia sa vola Pappa di Pappo ("pappa" je po taliansky "detska vyzivka", t.j. feed) a nachadza sa tu: https://kyberia.sk/id/20/ (dostupne aj cez link "PAPPA" v toolbare).

    Co sa zobrazuje:
    * Vsetky prispevky vo Vasich booknutych nodach (tzv. "children" nody).

    Co sa nezobrazuje (zatial nezaimplementovane z dovodu zarucenia rychlosti prevadzky):
    * Descendanti vo Vasich booknutych nodach.
    * Hardlinky vo Vasich booknutych nodach.

    FAZIT :: Ak chcete aby sa Vam obsahy z nejakeho fora vo feede zobrazovali, proste si to forum booknite.

    more children: (17)
  • 000001010000000108522199
    Synapse creator 13.07.2018 - 12:10:42 (modif: 15.03.2019 - 11:17:17) level: 1 UP [7K] New Hardlink Content changed
    Na známosť sa dáva, že od júla 2018 (AE4807) sa kybchain tokeny prideľujú najmä na základe užívateľskej veľkodušnosti.

    Ako s touto informáciou naložíš je čisto na Tebe, (ale odporúčam ju minimálne vziať na vedomie).
    more children: (5)
  • 000001010000000108518917
    asety 03.07.2018 - 06:27:38 level: 1 UP New
    a preco teda elektricka jazdi po kolajniciach?
    more children: (1)
  • 000001010000000108514408
    Synapse creator 21.06.2018 - 13:14:04 (modif: 22.06.2018 - 14:30:27) level: 1 UP [22K] New Hardlink Content changed
    Fórum ktorého cieľom je agregácia správ a vedeckých článkov o neduhoch digitálneho veku ako napr.

    - kyberšikana (cyber-bullying)
    - závislosť na počítačoch, smartphonoch, sociálnych sieťach atď.
    - digitálna demencia, digitálna anorexia atď.
    - vplyv používania digitálnych technológií na fyzické (napr. deformacia muskulatúry, poškodenie zraku atď.) či psychické (depresie, štiepenie osobnosti, samovražedné sklony) zdravie jednotlivca

    Mnohé z informácií z tohto fóra pravdepodobne využijem pri mojej profesúre v oblasti Digitálneho Vzdelávania. Z tohto dôvodu sú obzvlášť vítané príspevky tématizujúce vyššie vymenované neduhy vo vzťahu k deťom, adolescentom resp. študentom.

    Vďaka za pomoc

    Link 1: https://www.childrenssociety.org.uk/cyberbullying-inquiry

    Link 2: https://cyberpsychology.eu/
    more children: (21)
  • 000001010000000108504541
    Synapse creator 29.05.2018 - 09:22:58 level: 1 UP [48K] New Hardlink
    Kolko ludi by malo asi tak zaujem o kybca tricko?
    To moje uz dlhsie nenosim, lebo je na nom dierka a uz je dost osuntene.
    A strasne rad by som si kupil nove, lebo mam kybcu rad a to posledne tricko bolo fakt pekne.

    Keby zas niekto ako Kompot spravil merch, tak do toho idem.
    Kludne za vyssiu cenu a vytazok by sa pouzil bud na prevadzku Kybce, alebo by sa daroval na detsku onkologiu pripadne na charitu. Bolo by to velmi pekne gesto.
    more children: (57)
  • 000001010000000108483685
    Synapse creator 09.04.2018 - 22:17:17 (modif: 09.04.2018 - 22:26:31) level: 1 UP [15K] New Hardlink Content changed
    more children: (1)
  • 000001010000000108473596
    Synapse creator 19.03.2018 - 18:49:55 (modif: 02.04.2018 - 16:13:16) level: 1 UP [57K] New Hardlink Content changed
    Teraz pred mesiacom boli Kali, Kažo a Drucki (sami sa tak oslovujú, lebo oni sú/boli "najviac cool squadra") na Kube kvôli deblokácii kubánskeho dlhu za kubánske lieky "na diabetickú nohu", ktoré sa už úspešne testujú na stovkách pacientov aj u nás v Prešove (a potenciálne tiež za kubánske sestričky, za ktoré by ale kubánci chceli ofc radšej keš na drevo, tak z toho asi nič nebude) a tiež kvôli tomu, že tam slovenské firmy stavajú elektrárne na miestnu štandardne nekvalitnú ropu, takže sa tam išli riešiť dáke smerácke energetické kšeftíky.

    Išlo tam s nimi medzi inými aj toto bulo, Jožo R., boxer, o hlavu vyšší klon svojho fotra a asi o 50kg tažší. Od Che Guevarovho syna si tam Kali, Jožo R. a ešte napr. Peter T. z ÚV SR (ktorý bol na Kube evidentne len za odmenu) požičali dáke super čúper moderné Harley Davidsony, "urban cruiser" či čo. Che-ho syn je miestny prominent ťažko za vodou, ktorý tam má požičovňu s luxusnými Harleymi (btw sa vôbec nepodobá na svojho tatka, aj keď vyzerá ako malé bravčo). Takže kvôli našim sedlákom uzavreli časť Havany, aby sa mohli voziť po miestnych uliciach aj s ochrankou naokolo. Toto sa do slovenského bulváru nedostáva. Niektorí naši ochrankári išli snáď prvý krát na motorke, ale nevadí.

    Keď človek išiel s touto motorkárskou časťou len tak po ulici, tak mal pocit, že tam je s Černákovcami z 90s skrz ich štýl obliekania a hlavne správania.
    Jožo R., maximálny ogrgel, sa napr. rozplýval, ako sa mu nedávno narodila tuším tretia dcérka a hneď na ďalší deň sa chvastal ako sa z pitky vrámci ich chlastačky po havanských hotelových baroch vytratil s kubánkou a aká bola popiči atď atď.
    Pure bohapustý sedlák alebo to naňho aspoň umne hrá.

    Takže zixo má s tým grázlom žiaľ pravdu.
    more children: (7)
  • 000001010000000108465964 more children: (1)
  • 000001010000000108451669
    Synapse creator 02.02.2018 - 13:40:53 level: 1 UP [4K] New Hardlink
    Dámy a páni, trápieva ma, či je búh matematik, či bol Bradbury cirkusant, prelínanie hyletikov s eremiálami a Mersen; verím v inšpiráciu! A preto, 15. kolo LSK a jeho téma:

    do 28. 2. 2018
    Pome na to
    more children: (7)